Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet
Source: Journal of Perinatology
Source: Journal of Perinatology
Source: Breastfeeding Medicine
Source: Nutrients
Prolacta > Resources & Evidence
Source:
Breastfeeding Medicine
Author(s):
Sandhu A, Fast S, Bonnar K, Baier RJ, Narvey M
Source:
Seminars in Perinatology
Author(s):
Maffei D, Schanler RJ
Source:
Breastfeeding Medicine
Author(s):
Hair AB, Peluso AM, Hawthorne KM, et al.
Source:
BMC Research Notes
Author(s):
Hair AB, Hawthorne KM, Chetta KE, Abrams SA
Source:
Nutrients
Author(s):
Rogers SP, Hicks PD, Hamzo M, Veit LE, Abrams SA
Not finding the reference you’re looking for?
Use our main search field or email us at info@prolacta.com
Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet
Topics(s): Growth Late-onset sepsis Necrotizing entercolitis (NEC)
Source:
Journal of Perinatology
Author(s):
Fleig L, Hagan J, Lee ML, Abrams SA, Hawthorne KM, Hair AB
Abstract
Objective
Small for gestational age (SGA) preterm infants (PT) are at greatest risk for growth failure. Our objective was to assess the impact of an exclusive human milk diet (HUM) on growth velocities and neonatal morbidities from birth to discharge in a SGA population.
Study design
Multicenter, retrospective cohort study, subgroup analysis of SGA PT comparing a cow’s milk diet (CMD) with HUM diet.
Results
At birth 420 PT were classified as SGA (197 CMD group, 223 HUM group). Demographics and anthropometric measurements were similar. HUM group PT showed improvement in length Z score at discharge (p = 0.024) and reduction in necrotizing enterocolitis (NEC) (p = 0.004).
Conclusion
SGA PT fed a HUM diet had significantly decreased incidence of NEC, surgical NEC, and late-onset sepsis. Due to concerns about growth in a HUM diet, it is reassuring SGA infants fed the HUM diet had similar growth to CMD diet with trends toward improvement
Preterm infants fed cow's milk-derived fortifier had adverse outcomes despite a base diet of only mother's own milk
Topics(s): Mortality Necrotizing entercolitis (NEC)
Source:
Breastfeeding Medicine
Author(s):
Lucas A, Boscardin J, Abrams SA
Abstract
Objective
An increasingly common practice is to feed preterm infants a base diet comprising only human milk (HM), usually fortified with a cow's milk (CM)-derived fortifier (CMDF). We evaluated the safety of CMDF in a diet of 100% mother's own milk (MOM) against a HM-derived fortifier (HMDF). To date, this has received little research attention.
Study Design
We reanalyzed a 12-center randomized trial, originally comparing exclusive HM feeding, including MOM, donor milk (DM), and HMDF, versus a CM exposed group fed MOM, preterm formula (PTF), and CMDF1. However, for the current study, we performed a subgroup analysis (n = 114) selecting only infants receiving 100% MOM base diet plus fortification, and fed no DM or PTF. This allowed for an isolated comparison of fortifier type: CMDF versus HMDF to evaluate the primary outcomes: necrotizing enterocolitis (NEC) and a severe morbidity index of NEC surgery or death; and several secondary outcomes.
Results
CMDF and HMDF groups had similar baseline characteristics. CMDF was associated with higher risk of NEC; relative risk (RR) 4.2 (p = 0.038), NEC surgery or death (RR 5.1, p = 0.014); and reduced head circumference gain (p = 0.04).
Conclusions
In neonates fed, as currently recommended with a MOM-based diet, the safety of CMDF when compared to HMDF has been little researched. We conclude that available evidence points to an increase in adverse outcomes with CMDF, including NEC and severe morbidity comprising NEC surgery or death.
Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium and phosphorous
Topics(s): Feeding protocols Parenteral nutrition (PN/TPN) use
Source:
Nutrients
Author(s):
Rogers SP, Hicks PD, Hamzo M, Veit LE, Abrams SA
Abstract
Objective
Substantial losses of nutrients may occur during tube (gavage) feeding of fortified human milk. Our objective was to compare the losses of key macronutrients and minerals based on method of fortification and gavage feeding method.
Methods
We used clinically available gavage feeding systems and measured pre- and post-feeding (end-point) nutrient content of calcium (Ca), phosphorus (Phos), protein, and fat. Comparisons were made between continuous, gravity bolus, and 30-minute infusion pump feeding systems, as well as human milk fortified with donor human milk-based and bovine milk-based human milk fortifier using an in vitro model.
Results
Feeding method was significantly associated with fat and Ca losses, with increased losses in continuous feeds. Fat losses in continuous feeds were substantial, with 40 ± 3 % of initial fat lost during the feeding process. After correction for feeding method, human milk fortified with donor milk-based fortifier was associated with significantly less loss of Ca (8 ± 4% vs. 28 ± 4%, p< 0.001), Phos (3 ± 4% vs. 24 ± 4%, p < 0.001), and fat (17 ± 2% vs. 25 ± 2%, p = 0.001) than human milk fortified with a bovine milk-based fortifier (Mean ± SEM).
Human-based human milk fortifier as rescue therapy in very low birth weight infants demonstrating intolerance to bovine-based human milk fortifier
Topics(s): Feeding intolerance Feeding protocols Growth
Source:
Breastfeeding Medicine
Author(s):
Sandhu A, Fast S, Bonnar K, Baier RJ, Narvey M
Abstract
Objective
To describe the results of utilizing a human milk-based human milk fortifier (HMHMF) as rescue therapy to meet nutritional requirements in very low birth weight and preterm infants demonstrating feeding intolerance to bovine-based human milk fortifier (BHMF) in the Canadian Neonatal Intensive Care Unit (NICU) setting.
Methods
At two Level III NICUs in Winnipeg, MB, Canada, a rescue protocol was implemented to provide HMHMF for infants demonstrating intolerance to BHMF. To qualify for rescue, infants were required to experience two episodes of significant gastrointestinal (GI) symptoms associated with fortification with BHMF. A case series report was conducted retrospectively examining the success of rescue therapy, growth rates, protein, and calorie intakes before and after initiation of HMHMF in seven infants.
Results
Seven infants (birth weight 723 ± 247 g, gestation 25.3 ± 3.4 weeks) were treated with rescue fortification with HMHMF. All infants were transitioned off parenteral nutrition (PN) without relapse of GI symptoms. Growth rate, protein, and calorie intakes improved with the use of HMHMF.
Conclusions
Very low birth weight and preterm infants with GI intolerance to BHMF were successfully rescued with use of HMHMF. Improvements in growth were achieved without need for supplementation with PN through achievement of sufficient enteral calorie and protein intakes.
Human milk is the feeding strategy to prevent necrotizing enterocolitis
Topics(s): Feeding protocols Growth Necrotizing entercolitis (NEC)
Source:
Seminars in Perinatology
Author(s):
Maffei D, Schanler RJ
Abstract
Human milk is the preferred diet for preterm infants as it protects against a multitude of NICU challenges, specifically necrotizing enterocolitis. Infants who receive greater than 50% of mother’s own milk (MOM) in the 2 weeks after birth have a significantly decreased risk of NEC. An additional factor in the recent declining rates of NEC is the increased utilization of donor human milk (DHM). This creates a bridge until MOM is readily available, thus decreasing the exposure to cow milk protein. Preterm infants are susceptible to NEC due to the immaturity of their gastrointestinal and immune systems. An exclusive human milk diet compensates for these immature systems in many ways such as lowering gastric pH, enhancing intestinal motility, decreasing epithelial permeability, and altering the composition of bacterial flora. Ideally, preterm infants should be fed human milk and avoid bovine protein. A diet consisting of human milk-based human milk fortifier is one way to provide the additional nutritional supplements necessary for adequate growth while receiving the protective benefits of a human milk diet.
Beyond necrotizing enterocolitis prevention: improving outcomes with an exclusive human milk-based diet
Topics(s): Bronchopulmonary dysplasia (BPD) Feeding protocols Late-onset sepsis Mortality Necrotizing entercolitis (NEC) Retinopathy of prematurity (ROP)
Source:
Breastfeeding Medicine
Author(s):
Hair AB, Peluso AM, Hawthorne KM, et al.
Abstract
Objective
The aim of this study was to compare outcomes of infants pre and post initiation of a feeding protocol providing an exclusive human milk–based diet (HUM).
Methods
In a multicenter retrospective cohort study, infants with a birth weight <1,250 g who received a bovine-based diet (BOV) of mother's own milk fortified with bovine fortifier and/or preterm formula were compared to infants who received a newly introduced HUM feeding protocol. Infants were excluded if they had major congenital anomalies or died in the first 12 hours of life. Data were collected 2–3 years prior to and after introduction of an exclusive HUM diet. Primary outcomes were necrotizing enterocolitis (NEC) and mortality. Secondary outcomes included late-onset sepsis, retinopathy of prematurity (ROP), and bronchopulmonary dysplasia (BPD).
Results
A total of 1,587 infants were included from four centers in Texas, Illinois, Florida, and California. There were no differences in baseline demographics or growth of infants. The HUM group had significantly lower incidence of proven NEC (16.7% versus 6.9%, p < 0.00001), mortality (17.2% versus 13.6%, p = 0.04), late-onset sepsis (30.3% versus 19.0%, p < 0.00001), ROP (9% versus 5.2%, p = 0.003), and BPD (56.3% versus 47.7%, p = 0.0015) compared with the BOV group.
Conclusions
Extremely premature infants who received an exclusive HUM diet had a significantly lower incidence of NEC and mortality. The HUM group also had a reduction in late-onset sepsis, BPD, and ROP. This multicenter study further emphasizes the many benefits of an exclusive HUM diet, and demonstrates multiple improved outcomes after implementation of such a feeding protocol.
Human milk feeding supports adequate growth in infants ≤ 1250 grams birth weight
Topics(s): Feeding protocols Growth Necrotizing entercolitis (NEC)
Source:
BMC Research Notes
Author(s):
Hair AB, Hawthorne KM, Chetta KE, Abrams SA
Abstract
Background
Despite current nutritional strategies, premature infants remain at high risk for extrauterine growth restriction. The use of an exclusive human milk-based diet is associated with decreased incidence of necrotizing enterocolitis (NEC), but concerns exist about infants achieving adequate growth. The objective of this study was to evaluate growth velocities and incidence of extrauterine growth restriction in infants ≤ 1250 grams (g) birth weight (BW) receiving an exclusive human milk-based diet with early and rapid advancement of fortification using a donor human milk derived fortifier.
Methods
In a single center, prospective observational cohort study, preterm infants weighing ≤ 1250 g BW were fed an exclusive human milk-based diet until 34 weeks postmenstrual age. Human milk fortification with donor human milk derived fortifier was started at 60 mL/kg/d and advanced to provide 6 to 8 additional kilocalories per ounce (or 0.21 to 0.28 kilocalories per gram). Data for growth were compared to historical growth standards and previous human milk-fed cohorts.
Results
We consecutively evaluated 104 infants with mean gestational age of 27.6 ± 2.0 weeks and BW of 913 ± 181 g (mean ± standard deviation). Weight gain was 24.8 ± 5.4 g/kg/day with length 0.99 ± 0.23 cm/week and head circumference 0.72 ± 0.14 cm/week. There were 3 medical NEC cases and 1 surgical NEC case. 22 infants (21%) were small for gestational age at birth. Overall, 45 infants (43%) had extrauterine growth restriction. Weight velocity was affected by day of fortification (p = 0.005) and day of full feeds (p = 0.02). Our cohort had significantly greater growth in weight and length compared to previous entirely human milk-fed cohorts.
Conclusions
A feeding protocol for infants ≤ 1250 g BW providing an exclusive human milk-based diet with early and rapid advancement of fortification leads to growth meeting targeted standards with a low rate of extrauterine growth restriction. Consistent nutritional policies using this approach may be considered for this population.
Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium and phosphorous
Topics(s): Feeding protocols Parenteral nutrition (PN/TPN) use
Source:
Nutrients
Author(s):
Rogers SP, Hicks PD, Hamzo M, Veit LE, Abrams SA
Abstract
Objective
Substantial losses of nutrients may occur during tube (gavage) feeding of fortified human milk. Our objective was to compare the losses of key macronutrients and minerals based on method of fortification and gavage feeding method.
Methods
We used clinically available gavage feeding systems and measured pre- and post-feeding (end-point) nutrient content of calcium (Ca), phosphorus (Phos), protein, and fat. Comparisons were made between continuous, gravity bolus, and 30-minute infusion pump feeding systems, as well as human milk fortified with donor human milk-based and bovine milk-based human milk fortifier using an in vitro model.
Results
Feeding method was significantly associated with fat and Ca losses, with increased losses in continuous feeds. Fat losses in continuous feeds were substantial, with 40 ± 3 % of initial fat lost during the feeding process. After correction for feeding method, human milk fortified with donor milk-based fortifier was associated with significantly less loss of Ca (8 ± 4% vs. 28 ± 4%, p< 0.001), Phos (3 ± 4% vs. 24 ± 4%, p < 0.001), and fat (17 ± 2% vs. 25 ± 2%, p = 0.001) than human milk fortified with a bovine milk-based fortifier (Mean ± SEM).
Copyright © 2024 Prolacta. All Rights Reserved.