Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet
Source: Journal of Perinatology
Source: Journal of Perinatology
Source: Breastfeeding Medicine
Source: Nutrients
Prolacta > Resources & Evidence
Source:
Nutrients
Author(s):
Radu Galis, Paula Trif, Diana Mudura, Jan Mazela, Mandy C. Daly, Boris W. Kramer, and Shivashankar Diggikar
Source:
PLoS One
Author(s):
Scholz SM, Greiner W
Source:
BMC Pediatrics
Author(s):
Hampson G, Roberts SLE, Lucas A, Parkin D
Source:
Breastfeeding Medicine
Author(s):
Hair AB, Peluso AM, Hawthorne KM, et al.
Source:
Breastfeeding Medicine
Author(s):
Abrams SA, Schanler RJ, Lee ML, Rechtman DJ
Source:
ICAN
Author(s):
Huston RK, Markell AM, McCulley EA, et al.
Not finding the reference you’re looking for?
Use our main search field or email us at info@prolacta.com
Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet
Topics(s): Growth Late-onset sepsis Necrotizing entercolitis (NEC)
Source:
Journal of Perinatology
Author(s):
Fleig L, Hagan J, Lee ML, Abrams SA, Hawthorne KM, Hair AB
Abstract
Objective
Small for gestational age (SGA) preterm infants (PT) are at greatest risk for growth failure. Our objective was to assess the impact of an exclusive human milk diet (HUM) on growth velocities and neonatal morbidities from birth to discharge in a SGA population.
Study design
Multicenter, retrospective cohort study, subgroup analysis of SGA PT comparing a cow’s milk diet (CMD) with HUM diet.
Results
At birth 420 PT were classified as SGA (197 CMD group, 223 HUM group). Demographics and anthropometric measurements were similar. HUM group PT showed improvement in length Z score at discharge (p = 0.024) and reduction in necrotizing enterocolitis (NEC) (p = 0.004).
Conclusion
SGA PT fed a HUM diet had significantly decreased incidence of NEC, surgical NEC, and late-onset sepsis. Due to concerns about growth in a HUM diet, it is reassuring SGA infants fed the HUM diet had similar growth to CMD diet with trends toward improvement
Preterm infants fed cow's milk-derived fortifier had adverse outcomes despite a base diet of only mother's own milk
Topics(s): Necrotizing entercolitis (NEC)
Source:
Breastfeeding Medicine
Author(s):
Lucas A, Boscardin J, Abrams SA
Abstract
Objective
An increasingly common practice is to feed preterm infants a base diet comprising only human milk (HM), usually fortified with a cow's milk (CM)-derived fortifier (CMDF). We evaluated the safety of CMDF in a diet of 100% mother's own milk (MOM) against a HM-derived fortifier (HMDF). To date, this has received little research attention.
Study Design
We reanalyzed a 12-center randomized trial, originally comparing exclusive HM feeding, including MOM, donor milk (DM), and HMDF, versus a CM exposed group fed MOM, preterm formula (PTF), and CMDF1. However, for the current study, we performed a subgroup analysis (n = 114) selecting only infants receiving 100% MOM base diet plus fortification, and fed no DM or PTF. This allowed for an isolated comparison of fortifier type: CMDF versus HMDF to evaluate the primary outcomes: necrotizing enterocolitis (NEC) and a severe morbidity index of NEC surgery or death; and several secondary outcomes.
Results
CMDF and HMDF groups had similar baseline characteristics. CMDF was associated with higher risk of NEC; relative risk (RR) 4.2 (p = 0.038), NEC surgery or death (RR 5.1, p = 0.014); and reduced head circumference gain (p = 0.04).
Conclusions
In neonates fed, as currently recommended with a MOM-based diet, the safety of CMDF when compared to HMDF has been little researched. We conclude that available evidence points to an increase in adverse outcomes with CMDF, including NEC and severe morbidity comprising NEC surgery or death.
Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium and phosphorous
Topics(s): Feeding protocols Parenteral nutrition (PN/TPN) use
Source:
Nutrients
Author(s):
Rogers SP, Hicks PD, Hamzo M, Veit LE, Abrams SA
Abstract
Objective
Substantial losses of nutrients may occur during tube (gavage) feeding of fortified human milk. Our objective was to compare the losses of key macronutrients and minerals based on method of fortification and gavage feeding method.
Methods
We used clinically available gavage feeding systems and measured pre- and post-feeding (end-point) nutrient content of calcium (Ca), phosphorus (Phos), protein, and fat. Comparisons were made between continuous, gravity bolus, and 30-minute infusion pump feeding systems, as well as human milk fortified with donor human milk-based and bovine milk-based human milk fortifier using an in vitro model.
Results
Feeding method was significantly associated with fat and Ca losses, with increased losses in continuous feeds. Fat losses in continuous feeds were substantial, with 40 ± 3 % of initial fat lost during the feeding process. After correction for feeding method, human milk fortified with donor milk-based fortifier was associated with significantly less loss of Ca (8 ± 4% vs. 28 ± 4%, p< 0.001), Phos (3 ± 4% vs. 24 ± 4%, p < 0.001), and fat (17 ± 2% vs. 25 ± 2%, p = 0.001) than human milk fortified with a bovine milk-based fortifier (Mean ± SEM).
Association of fortification with human milk versus bovine milk-based fortifiers on short-term outcomes in preterm infants—A meta-analysis
Topics(s): Bronchopulmonary dysplasia (BPD) Feeding protocols Mortality
Source:
Nutrients
Author(s):
Radu Galis, Paula Trif, Diana Mudura, Jan Mazela, Mandy C. Daly, Boris W. Kramer, and Shivashankar Diggikar
Abstract
Abstract
This meta-analysis assessed short-term outcomes after using human milk-derived fortifiers (HMFs) compared with bovine milk fortifiers (BMFs) in preterm infants fed an exclusive human milk (HM) diet, either mother's own milk (MOM) or donor human milk (DHM). We searched PubMed, Embase, Google Scholar, CENTRAL and CINHAL between January 2015 and August 2023 for studies reporting outcomes in infants with ≤28 weeks gestation and/or birthweight ≤ 1500 g on an exclusive human milk diet fortified with HMF versus BMF.
The primary outcomes were death and NEC (stage ≥ 2). Four studies with a total of 681 infants were included. Mortality was significantly lower in infants fed with an HM-HMFs diet (four studies, 681 infants; RR = 0.50, 95% CI = 0.26-0.94; p = 0.03; I2 = 0%), NEC was similar between the two groups (four studies, 681 infants; RR = 0.48, 95% CI = 0.20-1.17; p = 0.11; I2= 39%). BPD was higher in the HM-BMFs group (four studies, 663 infants; RR = 0.83, 95% CI = 0.69-1.000; p = 0.05, I2 = 0%), although not statistically significant. No differences were found for sepsis (RR = 0.97, 95% CI = 0.66-1.42; p = 0.96; I2 = 26%) or combined ROP (four studies, 671 infants; RR = 0.64, 95% CI = 0.53-1.07; p = 0.28; I2 = 69%).
An HM-HMFs diet could possibly be associated with decreased mortality with no association with NEC, BPD, sepsis, or ROP. This meta-analysis was limited by the small number of studies included. However, the results should not be refuted for this reason as they provide an impetus for subsequent clinical trials to assess the observed associations.
Conclusion
Our data associates bovine milk-derived fortifiers with a possibly increased risk of death, which makes a reversal possibly necessary. However, the introduction of bovine milk fortifiers cannot yet be judged due to the lack of sufficiently powered clinical trials and the lack of relevant information about the long-term outcomes in terms of neurodevelopment. Although BPD itself is a disease for life and is associated with poorer neurodevelopmental outcomes, we need neurodevelopmental follow-up data from all survivors to definitely address the question of if the use of an exclusive human milk diet from MOM and/or pooled DM is warranted due to the unique nutritional and immunological benefits from human breast milk which can reduce the relevant outcomes of an extremely low gestational period. The results should not be refuted for formal reasons but should be taken as the need to further define the effects of a human milk diet (MOM and/or pooled DM) supplemented with human milk fortifiers.
An exclusive human milk diet for very low birth weight newborns—a cost-effectiveness and EVPI study for Germany.
Topics(s): Bronchopulmonary dysplasia (BPD) Cost savings / cost effectiveness Late-onset sepsis Mortality Necrotizing entercolitis (NEC) Retinopathy of prematurity (ROP)
Source:
PLoS One
Author(s):
Scholz SM, Greiner W
Abstract
Objectives
Human milk-based fortifiers have shown a protective effect on major complications for very low birth weight newborns. The current study aimed to estimate the cost-effectiveness of an exclusive human milk diet (EHMD) compared to the current approach using cow’s milk-based fortifiers in very low birth weight newborns.
Methods
A decision tree model using the health states of necrotising enterocolitis (NEC), sepsis, NEC + sepsis and no complication was used to calculate the cost-effectiveness of an EHMD. For each health state, bronchopulmonary dysplasia (BPD), retinopathy of prematurity (RoP) and neurodevelopmental problems were included as possible complications; additionally, short-bowel syndrome (SBS) was included as a complication for surgical treatment of NEC. The model was stratified into birth weight categories. Costs for inpatient treatment and long-term consequences were considered from a third party payer perspective for the reference year 2017. Deterministic and probabilistic sensitivity analyses were performed, including a societal perspective, discounting rate and all input parameter-values.
Results
In the base case, the EHMD was estimated to be cost-effective compared to the current nutrition for very low birth weight newborns with an incremental cost-effectiveness ratio (ICER) of €28,325 per Life-Year-Gained (LYG). From a societal perspective, the ICER is €27,494/LYG using a friction cost approach and €16,112/LYG using a human capital approach. Deterministic sensitivity analyses demonstrated that the estimate was robust against changes in the input parameters and probabilistic sensitivity analysis suggested that the probability EHMD was cost-effective at a threshold of €45,790/LYG was 94.8 percent.
Conclusion
Adopting EHMD as the standard approach to nutrition is a cost-effective intervention for very low birth weight newborns in Germany.
An economic analysis of human milk supplementation for very low birth weight babies in the USA
Topics(s): Bronchopulmonary dysplasia (BPD) Cost savings / cost effectiveness Length of hospital stay Mortality Necrotizing entercolitis (NEC) Neurodevelopmental outcomes Retinopathy of prematurity (ROP)
Source:
BMC Pediatrics
Author(s):
Hampson G, Roberts SLE, Lucas A, Parkin D
Abstract
Background
An exclusive human milk diet (EHMD) using human milk based products (pre-term formula and fortifiers) has been shown to lead to significant clinical benefits for very low birth weight (VLBW) babies (below 1250 g). This is expensive relative to diets that include cow’s milk based products, but preliminary economic analyses have shown that the costs are more than offset by a reduction in the cost of neonatal care. However, these economic analyses have not completely assessed the economic implications of EHMD feeding, as they have not considered the range of outcomes affected by it.
Methods
We conducted an economic analysis of EHMD compared to usual practice of care amongst VLBW babies in the US, which is to include cow's milk based products when required. Costs were evaluated from the perspective of the health care payer, with societal costs considered in sensitivity analyses.
Results
An EHMD substantially reduces mortality and improves other health outcomes, as well as generating substantial cost savings of $16,309 per infant by reducing adverse clinical events. Cost savings increase to $117,239 per infant when wider societal costs are included.
Conclusions
An EHMD is dominant in cost-effectiveness terms, that is it is both cost-saving and clinically beneficial, for VLBW babies in a US-based setting.
Beyond necrotizing enterocolitis prevention: improving outcomes with an exclusive human milk-based diet
Topics(s): Bronchopulmonary dysplasia (BPD) Feeding protocols Late-onset sepsis Mortality Necrotizing entercolitis (NEC) Retinopathy of prematurity (ROP)
Source:
Breastfeeding Medicine
Author(s):
Hair AB, Peluso AM, Hawthorne KM, et al.
Abstract
Objective
The aim of this study was to compare outcomes of infants pre and post initiation of a feeding protocol providing an exclusive human milk–based diet (HUM).
Methods
In a multicenter retrospective cohort study, infants with a birth weight <1,250 g who received a bovine-based diet (BOV) of mother's own milk fortified with bovine fortifier and/or preterm formula were compared to infants who received a newly introduced HUM feeding protocol. Infants were excluded if they had major congenital anomalies or died in the first 12 hours of life. Data were collected 2–3 years prior to and after introduction of an exclusive HUM diet. Primary outcomes were necrotizing enterocolitis (NEC) and mortality. Secondary outcomes included late-onset sepsis, retinopathy of prematurity (ROP), and bronchopulmonary dysplasia (BPD).
Results
A total of 1,587 infants were included from four centers in Texas, Illinois, Florida, and California. There were no differences in baseline demographics or growth of infants. The HUM group had significantly lower incidence of proven NEC (16.7% versus 6.9%, p < 0.00001), mortality (17.2% versus 13.6%, p = 0.04), late-onset sepsis (30.3% versus 19.0%, p < 0.00001), ROP (9% versus 5.2%, p = 0.003), and BPD (56.3% versus 47.7%, p = 0.0015) compared with the BOV group.
Conclusions
Extremely premature infants who received an exclusive HUM diet had a significantly lower incidence of NEC and mortality. The HUM group also had a reduction in late-onset sepsis, BPD, and ROP. This multicenter study further emphasizes the many benefits of an exclusive HUM diet, and demonstrates multiple improved outcomes after implementation of such a feeding protocol.
Greater mortality and morbidity in extremely preterm infants fed a diet containing cow milk protein products
Topics(s): Bronchopulmonary dysplasia (BPD) Growth Late-onset sepsis Mortality Necrotizing entercolitis (NEC) Retinopathy of prematurity (ROP)
Source:
Breastfeeding Medicine
Author(s):
Abrams SA, Schanler RJ, Lee ML, Rechtman DJ
Abstract
Background
Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit.
Methods
EP infants <1,250 g birth weight received a diet consisting of either human milk fortified with a human milk protein-based fortifier (HM) (n=167) or a diet containing variable amounts of milk containing cow milk-based protein (CM) (n=93). Principal outcomes were mortality, necrotizing enterocolitis (NEC), growth, and duration of parenteral nutrition (PN).
Results
Mortality (2% versus 8%, p=0.004) and NEC (5% versus 17%, p=0.002) differed significantly between the HM and CM groups, respectively. For every 10% increase in the volume of milk containing CM, the risk of sepsis increased by 17.9% (p<0.001). Growth rates were similar between groups. The duration of PN was 8 days less in the subgroup of infants receiving a diet containing <10% CM versus ≥10% CM (p<0.02).
Conclusions
An exclusive human milk diet, devoid of CM-containing products, was associated with lower mortality and morbidity in EP infants without compromising growth and should be considered as an approach to nutritional care of these infants.
Decreasing necrotizing enterocolitis and gastrointestinal bleeding in the neonatal intensive care unit: the role of donor human milk and exclusive human milk diets in infants ≤ 1500 g birth weight
Topics(s): Cost savings / cost effectiveness Mortality Necrotizing entercolitis (NEC)
Source:
ICAN
Author(s):
Huston RK, Markell AM, McCulley EA, et al.
Abstract
Synopsis
Premature infants are a heterogeneous group with widely differing needs for nutrition and immune protection with risk of growth failure, developmental delays, necrotizing enterocolitis, and late-onset sepsis increasing with decreasing gestational age and birth weight. Human milk from women delivering prematurely has more protein and higher levels of many bioactive molecules compared to milk from women delivering at term.
Human milk must be fortified for small premature infants to achieve adequate growth. Mother’s own milk improves growth and neurodevelopment and decreases the risk of necrotizing enterocolitis and late-onset sepsis and should therefore be the primary enteral diet of premature infants. Donor milk is a valuable resource for premature infants whose mothers are unable to provide an adequate supply of milk, but presents significant challenges including the need for pasteurization, nutritional and biochemical deficiencies and a limited supply.
Copyright © 2025 Prolacta. All Rights Reserved.